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Abstract
In this paper, we present a general method of superstabilization corresponding
to add the ‘forward scattering’ interaction to some non-superstable model.
Then, we evaluate the free-energy density, the grand-canonical pressure
and particle density for the new (superstable) Bose gas using those for
the (non-superstable) model. To sum up, this first part should give us
the thermodynamic basis necessary to explain, in a subsequent paper, the
main interest of this method: the restoration of the strong equivalence of
ensembles (canonical/grand-canonical) without destroying the ‘fundamental’
thermodynamic properties (such as Bose condensation phenomenona) issued
from the first non-superstable system.

PACS numbers: 05.30.Jp, 03.75.Fi, 05.70.−a

1. Introduction

For any gas, the interaction potential between particles cannot be arbitrary: it must become
sufficiently weak with increasing inter-particle distance to ensure the thermodynamic limit
is met, and it becomes repulsive on short distances to prevent collapse of an infinite number
of particles [1]. A necessary property to imply the existence of the corresponding grand
partition function is the condition of stability, which has to be verified by the interaction
potential. For Fermi gases or classical systems of particles, this condition is sufficient to
ensure the existence of thermodynamic functions for any chemical potential, but it is not for
Bose systems. For Bose gases, such a sufficient condition is given by the concept of superstable
interaction, see [1]. In fact, this superstability property could be ensured for any Bose gas,
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in an artificial way, by adding the ‘forward scattering’ interaction on the corresponding
non-superstable interaction. Of course, that procedure restores the convergence of the grand-
canonical functions in the thermodynamic limit, but also ensures the strong equivalence of
canonical and grand-canonical ensembles. However, this concept of equivalence of ensembles
is not the purpose of this paper. Before we go further, we need to recall some facts concerning
the homogeneous Bose system under full interaction in order to fix the notation.

For the interacting homogeneous gas of n spinless bosons with mass m enclosed in a cubic

box� = d×
α=1

L ⊂ R
d , the Hamiltonian is defined by a self-adjoint (SA) extension

H
(n)
� =


n∑
j=1

(
− h̄

2�j

2m

)
+

1

2

n∑
i,j=1
(i �=j)

�(xi − xj )


s-a

(1.1)

on the symmetrized n-particle Hilbert spaces

H(n)
B ≡ (L2(�n))symm H(0)

B = C (1.2)

appropriate for bosons [1, 2]. Here �(x) = �(‖x‖) denotes a (real) two-body interaction
potential and we consider periodic boundary conditions.

Let us consider a first kind of translation-invariant interaction potential ϕ(x), which
satisfies the following assumptions:

(A) ϕ(x) ∈ L1(Rd);
(B) its (real) Fourier transformation

v(q) =
∫
R
d

ddx ϕ(x) e−iqx q ∈ R
d (1.3)

satisfies: v(0) > 0 and 0 � v(q) � v(0) for q ∈ R
d .

Note that ϕ(x) = ϕ(‖x‖) implies v(q) = v(‖q‖). Then, by (1.1) with ϕ(x) = �(x), the
Hamiltonian of the system acting on the boson Fock space FB

� can be written in the second
quantized form as

H� =
∑
k∈�∗

εka
∗
k ak +

1

2V

∑
k1,k2,q∈�∗

v(q)a∗
k1+qa

∗
k2−qak1ak2 (1.4)

considering that εk = h̄2k2/2m represents the one-particle energy spectrum, and where the
sums run over the set

�∗ =
{
k ∈ R

d : kα = 2πnα
L

, nα = 0,±1,±2, . . . , α = 1, 2, . . . , d

}
because of periodic boundary conditions. Here, a#

k = {a∗
k or ak} are the usual boson

creation/annihilation operators in the one-particle state ψk(x) = V − 1
2 eikx, k ∈ �∗, x ∈ �,

acting on the boson Fock space

FB
� ≡+∞⊕

n=0
H(n)

B (1.5)

whereH(n)
B is the boson space (1.2). Under assumptions (A) and (B) on the interaction potential

ϕ(x), the full HamiltonianH� (1.4) is superstable [1].
Nowadays, for a large class of interaction potentials ϕ(x), the Bose gas (1.4) in full

interaction remains thermodynamically unsolved, so that even the standard canonical or grand-
canonical thermodynamic functions (free-energy density or pressure) are not found explicitly.
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A way to extract some thermodynamic properties from the original model (1.4) could be, either
using a very particular two-body potential ϕ(x) (see [3–8]), or truncating the full interaction
of (1.4), see, for example, the analysis of the weakly imperfect Bose gas used to derive the
microscopic theory of superfluidity [9–13].

Thus, an example is given by the mean-field (MF) HamiltonianHMF
� . It corresponds to a

constant two-body potential in the box�:

ϕMF(x) = 1

V
ϕ0χ�(x) =

{
ϕ0/V, for x ∈ �

0, for x /∈ �
}
. (1.6)

Its (real) Fourier transform (1.3) is equal to

v(q) = ϕ0δq,0 =
{
ϕ0, for q = 0
0, for q �= 0

}
. (1.7)

Hence, ϕ0 = v(0) > 0 and the full Hamiltonian (1.4) becomes

HMF
� ≡ T� + UMF

� (1.8)

with

T� ≡
∑
k∈�∗

εka
∗
kak (1.9)

UMF
� ≡ v(0)

2V

∑
k1,k2∈�∗

a∗
k1
a∗
k2
ak2ak1 . (1.10)

In fact, using some interaction potential v(q) (1.3), the MF interaction (1.10) consists of
cutting-off the terms with q �= 0 in the full interaction of (1.4). The interaction (1.10) is also
called the ‘forward scattering’ interaction.

Considering the particle number operator,

N� ≡
∑
k∈�∗

a∗
k ak (1.11)

note that

UMF
� = v(0)

2V

(
N2
� − N�

)
(1.12)

and the second term in (1.12) has the order o(V ). Then, the thermodynamic (bulk) properties
of the MF model (1.8) coincide with those described by the Hamiltonian

H IBG
� ≡ T� +

v(0)

2V
N2
� (1.13)

known as the imperfect Bose-gas (IBG) [14]. Analysed exhaustively in [15–20], the IBG
(1.13) (or the MF model (1.8)) is one among the first diagonal models extracted from the full
Hamiltonian (1.4), see [14, 21–25]. Its main interest remains that the pathological aspect of
the perfect Bose gas (PBG, see (1.9)), i.e. the non-existence of the grand-canonical pressure
for positive chemical potential, is removed by the interaction v(0)N2

�

/
2V (or (1.10)), without

destroying the conventional Bose–Einstein condensation for dimensions d � 3, and without
creating a gap in the spectrum (for further discussions, see [13]).

Then, the interaction (1.10) or

λ

V
N2
�, λ = v(0)

2
> 0 (1.14)

in (1.13) stabilize the kinetic part T� (1.9) for any chemical potential in the grand-canonical
ensemble. However, adding (1.14) to a non-superstable Hamiltonian HX

� (for example,
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HX
� = T� (1.9)) does not seem to change the intrinsic thermodynamic properties of the

original Hamiltonian HX
� . For example, by analogy with the PBG (1.9) and the IBG (1.13)

[16, 17, 20], the phenomenon of Bose condensation seems to persist in the new superstabilized
model

HSX
� ≡ HX

� +
λ

V
N2
�.

Therefore, the purpose of this paper is to present a general method of superstabilization
based on the addition of the interaction (1.14) (or the ‘forward scattering’ interaction (1.10))
to a non-superstable model X. Then, assuming sufficient conditions (such as the weak
equivalence of ensembles) on the non-superstable Bose system X, we explicit in this paper the
thermodynamic functions (free-energy density, grand-canonical pressure and particle density)
of the new superstabilized model SX.

Hence, in section 2, we define the two Hamiltonians, non-superstable (model X) and
superstable (model SX), with their basic thermodynamic functions, but also some sufficient
conditions on the Bose system X. Then, in section 3, we derive the thermodynamic fundamental
functions of the new superstable model SX using those of the non-superstable model X, i.e.
we evaluate the thermodynamic limit of the free-energy density and the grand-canonical
pressure for the superstable model SX. Section 4 corresponds to a detailed explanation of the
thermodynamic behaviour of the corresponding grand-canonical SX particle density. Then
section 5 gives some direct applications as the thermodynamic properties of the superstable
model SX in the grand-canonical ensemble for a fixed particle density. We reserve section 6
for concluding remarks and discussions. Some technical statements are presented in
appendix A.

2. Set-up of the problem

We consider a system X of bosons of mass m enclosed in a cubic box � = d×
α=1

L ⊂ R
d with a

volume V ≡ |�| = Ld , defined by some non-superstable Hamiltonian

HX
� ≡

∑
k∈�∗

εka
∗
kak + UX

� = T� + UX
� (2.1)

with εk = h̄2k2/2m � 0 which defines the one-particle energy spectrum of free bosons in
modes k ∈ �∗, see (1.9). Here UX

� is a stable interaction [1], i.e. ∃B � 0 so that,

UX
� � −BN� (2.2)

where N� (1.11) is the particle number operator in the box �. We also consider[
HX
� ,N�

] = 0. (2.3)

Equation (2.3) means that there is a conservation of the particle number in the box � for the
Bose gas X (2.1). This condition (2.3) is useful here in the canonical ensemble.

Then, we denoteHSX
� the corresponding Hamiltonian defined by

HSX
� ≡ HX

� +
λ

V
N2
� λ > 0. (2.4)

Here, the two HamiltoniansHX
� (2.1) andHSX

� (2.4) are defined on the boson Fock space FB
�

(1.5). By (2.2), note that the Hamiltonian HSX
� (2.4) or the corresponding interaction

USX
� ≡ UX

� +
λ

V
N2
� λ > 0
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i.e.

HSX
� = T� + USX

�

is superstable [1]:

USX
� � −BN� +

λ

V
N2
� λ > 0 (2.5)

see (2.1) and (2.4). Also note that (2.3) and (2.4) imply the conservation of the particle number
in the box� for the Bose gas SX (2.4):[

HSX
� ,N�

] = 0.

To fix the notation, the fixed inverse temperature is defined by β, and using the canonical
ensemble, the particle density is denoted by ρ. In the grand-canonical ensemble, we choose
two different parameters for the chemical potential:

• α as the chemical potential used for the (non-superstable) model X (2.1);

• µ as the chemical potential used for the (superstable) model SX (2.4).

In fact, this notation, α and µ for the chemical potential, allows us to highlight the
thermodynamic links between the Bose systems X (2.1) and SX (2.4). Then, we define the
‘standard’ thermodynamic functions in the canonical and grand-canonical ensembles:

• by f X� (β, ρ) and f SX� (β, ρ), the free-energy densities associated with the Hamiltonians
HX
� (2.1) and HSX

� (2.4), respectively, i.e.

f X� (β, ρ) ≡ − 1

βV
ln TrH(n)

B

({
e−βHX

�

}(n))
f SX� (β, ρ) ≡ − 1

βV
ln TrH(n)

B

({
e−βHSX

�

}(n)) (2.6)

where n = [Vρ] denotes the integer part of Vρ (ρ > 0), whereas we define by

A(n) ≡ A
H(n)
B (2.7)

the restriction of any operator A acting on the boson Fock space FB
� (1.5) to H(n)

B (1.2);
• by pX�(β, α) and pSX� (β,µ), the grand-canonical pressures associated with HX

� (2.1) and
HSX
� (2.4) respectively, i.e.

pX�(β, α) ≡ 1

βV
ln TrFB

�

(
e−β(HX

�−αN�)
)

pSX� (β,µ) ≡ 1

βV
ln TrFB

�

(
e−β(HSX

� −µN�)
) (2.8)

• by ρX�(β, α) and ρSX� (β,µ), the grand-canonical particle densities associated with HX
�

(2.1) and HSX
� (2.4) respectively, i.e.

ρX�(β, α) ≡
〈
N�

V

〉
HX
�

(β, α) = ∂αp
X
�(β, α)

ρSX� (β,µ) ≡
〈
N�

V

〉
HSX
�

(β,µ) = ∂µp
SX
� (β,µ).

(2.9)
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Here

〈−〉HX
�
(β, α) ≡

TrFB
�

(
(−) e−β(HX

�−αN�)
)

TrFB
�

(
e−β(HX

�−αN�))
〈−〉HSX

�
(β,µ) ≡

TrFB
�

(
(−) e−β(HSX

� −µN�)
)

TrFB
�

(
e−β(HSX

� −µN�)
)

(2.10)

see (2.7), i.e. 〈−〉HX
�
(β, α) or

(〈−〉HSX
�
(β,µ)

)
represents the (finite-volume) grand-canonical

Gibbs state for some Hamiltonian HX
� (or HSX

� ).
Now, let us consider three assumptions that have to be verified by the thermodynamic

limit of functions (2.6) and (2.8) for the first (non-superstable) HamiltonianHX
� (2.1).

Condition 2.1.

(i) The (infinite-volume) free-energy density

f X(β, ρ)≡ lim
�
f X� (β, ρ) < +∞ (2.11)

cf (2.6), is defined for any β > 0 and ρ > 0.
(ii) The stability domainQX of HX

� defined by

QX ≡ {(β > 0, α ∈ R) : lim
�
pX�(β, α) < +∞} (2.12)

cf (2.8), is equal to

QX = Q ≡ {β > 0} × {α < αsup < +∞}. (2.13)

(iii) Fixing the inverse temperature β > 0, the thermodynamic limit of pX�(β, α) (2.8), i.e.

pX(β, α) ≡ lim
�
pX�(β, α) < +∞ for α < αsup (2.14)

and the (infinite-volume) free-energy density f X(β, ρ), (2.11), are always related by the
Legendre transformation:

pX(β, α) = sup
ρ>0

{αρ − f X(β, ρ)} α < αsup

f X(β, ρ) = sup
α<αsup

{αρ − pX(β, α)} ρ > 0
(2.15)

i.e. the weak equivalence of canonical and grand-canonical ensembles is verified for the
gas X (2.1).

Of course, the PBG (1.9) verifies the assumptions of condition 2.1 with αsup = 0, see
[26].

We conclude these definitions and assumptions with a few remarks. The first one concerns
condition (ii) and the existence of a chemical potential limit αsup ∈ R in the stability domain
QX (2.12). The stability domainQX may also be

QX = Q ∪ {(β > 0, αsup)} = {β > 0} × {α � αsup < +∞} (2.16)

instead of (2.13). A simple example is given in [27]. The case (2.16) implies that no problems
are more complex than (2.13). To simplify, we consider by default that only (2.13) is verified.

Also, note that the corresponding PBG pressure in the thermodynamic limit is defined for
α < αsup = 0, i.e. the stability domainQPBG of the PBG equals

QPBG = {β > 0} × {α < αsup = 0}
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for d < 3, whereas for d � 3 this domain could be extended by continuity of the infinite-
volume PBG pressure to

QPBG ∪ {(β > 0, 0)} = {β > 0} × {α � 0}
see below (5.18). Via (2.13), the infinite-volume pressurepX(β, α) (2.14) is then well defined,
only for α < αsup, but if

lim
α→α−

sup

pX(β, α) < +∞

then we extend pX(β, α) by continuity to

QX ∪ {(β > 0, αsup)} = Q ∪ {(β > 0, αsup)} = {β > 0} × {α � αsup < +∞}
i.e.

pX(β, αsup) ≡ lim
α→α−

sup

pX(β, α) < +∞. (2.17)

Note that
{
pX�(β, α)

}
�

is a set of convex functions for α < αsup, and using the Griffiths lemma
[28, 29], by (2.9), the (infinite-volume) particle density ρX(β, α)

ρX(β, α) ≡ lim
�
ρX�(β, α) < +∞ for α < αsup (2.18)

equals

ρX(β, α) = ∂αp
X(β, α). (2.19)

Then, we may have two different cases:

(a) either there is no critical particle density, i.e.

lim
α→α−

sup

ρX(β, α) = lim
α→α−

sup

∂αp
X(β, α) = +∞ (2.20)

cf (2.19),
(b) or there is a saturation of the infinite-volume particle density ρX(β, α) (2.18), i.e. one

has a critical particle density

ρX(β, αsup) ≡ lim
α→α−

sup

ρX(β, α) = lim
α→α−

sup

∂αp
X(β, α) < +∞ (2.21)

cf (2.19).

Our second remark concerns condition (iii). In fact, this property is verified by a large set
of Hamiltonians. For example, in (1.1), we can consider a second kind of translation-invariant
interaction potential ϕ̃(x) = ϕ̃(r = ‖x‖) = �(x), in a three-dimensional space (d = 3),
which verifies:

(A′) a sufficiently rapid decrease at infinity; i.e. for large r > 0, ϕ̃(r)| < 1/r3+ξ , with ξ > 0;
(B′) a sufficiently rapid increase at zero: ϕ̃(r) > 1/r3+ξ for r < r0 and ξ > 0;
(C′) bounded from below: ϕ̃(r) > A.

Then, when these conditions are satisfied, for any distribution of points (x1, . . . , xn) in
R

3 we have

1

2

n∑
i,j=1
(i �=j)

ϕ̃(xi − xj ) > −Bn



8976 J-B Bru

where B > 0 is a constant only depending on ϕ̃(x) [30, 31]. Therefore, using the basic boson
operators a#(x) = {a∗(x) or a(x)} on FB

� (1.5), and assuming that (A′), (B ′) and (C ′) are
verified, the Hamiltonian

H̃� ≡
∫
�

a∗(x)
(
− h̄

2�

2m

)
a(x) d3x +

1

2

∫
�

∫
�

a∗(x)a∗(y)̃ϕ(x − y)a(x)a(y) d3x d3y (2.22)

corresponding in H(n)

B (1.2) to H(n)
� (1.1) with �(x) = ϕ̃(x), is stable, i.e. one has (2.2) for

UX
� = Ũ� ≡ 1

2

∫
�

∫
�

a∗(x)a∗(y)̃ϕ(x − y)a(x)a(y) d3x d3y.

Actually, (i) is verified. Moreover, using the results about the related entropy done in [32], the
condition (iii), i.e. the weak equivalence (2.15) of canonical and grand-canonical ensembles,
is verified.

Now, assuming the necessary assumptions of condition 2.1, the objective of the final part
of this paper is to compute the standard thermodynamic functions for the superstable Bose gas
SX (2.4), using those for the non-superstable model X (2.1), see (2.6)–(2.9).

3. Free-energy density and grand-canonical pressure

3.1. Canonical ensemble: free-energy density

First, we evaluate, in the thermodynamic limit, the free-energy density f SX� (β, ρ) from the
thermodynamic limit of the free-energy density f X� (β, ρ), cf (2.6).

Theorem 3.1. Assuming (i) of condition 2.1, we have

f SX(β, ρ) = f X(β, ρ) + λρ2 ρ > 0 (3.1)

with f X(β, ρ) defined by (2.11) and

f SX(β, ρ) ≡ lim
�
f SX� (β, ρ) < +∞ (3.2)

see (2.6).

Proof. Assumption (i) of condition 2.1 implies the existence of the thermodynamic limit
f X(β, ρ) (2.11) for ρ > 0. Then, from (2.3), (2.4) and (2.6) one has

f SX� (β, ρ) = f X� (β, ρ) + λρ2

which implies (3.1) in the thermodynamic limit. �

Note that if f X(β, ρ) is convex for ρ > 0 (condition 2.1 (iii)) then by (3.1), f SX(β, ρ) (3.2) is
strictly convex for ρ > 0. Thus, the grand-canonical particle density ρSX� (β,µ) (2.9) should
be continuous in the thermodynamic limit as a function of µ.

3.2. The grand-canonical pressure

Now we establish the thermodynamic limit of the grand-canonical pressure pSX� (β,µ) from
pX�(β, α), see (2.8).

Theorem 3.2. If the non-superstable Hamiltonian HX
� (2.1) verifies condition 2.1 then the

stability domainQSX of HSX
� (2.4) equals

QSX ≡ {(β > 0, µ ∈ R) : lim
�
pSX� (β,µ) < +∞} = QS ≡ {β > 0} × {µ ∈ R} (3.3)
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and

pSX(β,µ) ≡ lim
�
pSX� (β,µ) = inf

α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
(3.4)

for (β,µ) ∈ QS . Here pX(β, α) is defined by (2.14).

Proof. From (2.2), the Hamiltonian (2.4) is superstable [1], see (2.5). So, the thermodynamic
limit

pSX(β,µ) ≡ lim
�
pSX� (β,µ)

exists for any β > 0 and µ ∈ R, i.e. one has (3.3).
The rest of the proof is a generalization for some Bose systems satisfying condition 2.1

of for a specific diagonal model, see [33]. In fact, by (2.15) in condition 2.1, the (infinite-
volume) free-energy density f X(β, ρ) (2.11), as a function of ρ > 0, is always convex.
Therefore, since pSX(β,µ) is a continuous function for µ ∈ R, the lemmas A.2, A.4 and A.5
(appendix A) imply (3.4) for any ρ > 0. �

As a matter of fact, the main idea in proving theorem 3.2 is to consider the pressure
pSX(β,µ) as the Legendre transformation of f SX(β, ρ), (3.1) and (3.2), which, by direct
computations, implies

pSX(β,µ) = sup
ρ>0

{µρ − λρ2 − f X(β, ρ)} = sup
ρ>0

{
inf
α<αsup

{
αρ +

(µ− α)2

4λ
− f X(β, ρ)

}}
.

(3.5)

Then, the technical difficulty of the proof is to find some sufficient conditions, i.e. condition
2.1, to commute sup

ρ>0
and inf

α<αsup

in (3.5) to obtain

pSX(β,µ) = inf
α<αsup

{
sup
ρ>0

{
αρ +

(µ− α)2

4λ
− f X(β, ρ)

}}

= inf
α<αsup

{
sup
ρ>0

{αρ − f X(β, ρ)} +
(µ− α)2

4λ

}
(3.6)

i.e. (3.4) (see (2.15)).

4. Behaviour of the grand-canonical particle density

For most parts of the studied Hamiltonians, the corresponding particle density ρX�(β, α) (2.9)
is a continuous function for any α < αsup, even in the thermodynamic limit. Nevertheless,
the Bogoliubov weakly imperfect Bose gas (see equation (3.81) in [10]) gives us an example
for which there might exist one chemical potential α1,β < αsup = 0, so that the corresponding
grand-canonical particle density is not continuous at this point α1,β in the thermodynamic
limit [11–13]. To illustrate our purpose, we assume that the non-superstable HamiltonianHX

�

(2.1) verifies the three assumptions (i)–(iii) of condition 2.1 and also the following additional
condition:

(iv) the (infinite-volume) particle density ρX(β, α) (2.18) is a continuous function for
α < αsup, except for one chemical potential α1,β < αsup.
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Figure 1. Illustration of the (infinite-volume) particle densityρX (β, α) (2.18) with (a) no saturation
of the particle density ρX(β, α), see (2.20); (b) saturation of the particle density ρX(β, α), see
(2.21).

Before we go further, let me add the following remark. Since the derivative (2.19) (as a
function of α �= α1,β) of the pressure pX(β, α �= α1,β ) is continuous (see assumption (iv)),
using a Tauberien theorem proven in [32], the existence of pX(β, α) already implies the strict
convexity of f X(β, ρ) (2.11) and the weak equivalence (2.15) of ensembles (canonical/grand-
canonical) for

ρ ∈ Iρ(β) ≡
(

0, lim
α→α−

sup

ρX(β, α)

)∖[
ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

]
(4.1)

with

ρXinf(β, α1,β) ≡ lim
α→α−

1,β

ρX(β, α) = lim
α→α−

1,β

∂αp
X(β, α) < lim

α→α−
sup

ρX(β, α)

ρXsup(β, α1,β ) ≡ lim
α→α+

1,β

ρX(β, α) = lim
α→α+

1,β

∂αp
X(β, α) < lim

α→α−
sup

ρX(β, α).
(4.2)

Therefore, if (ii) and (iv) are verified, conditions (i) and (iii) ensure the existence of the
free-energy density f X(β, ρ) (2.11) and the weak equivalence (2.15) only for

ρ ∈
[
ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

]
(4.3)

if there is a discontinuity of the particle density ρX(β, α) for some α = α1,β , see (4.2), but
also for

ρ � ρX(β, αsup) (4.4)

if there is a saturation of the infinite-volume particle density ρX(β, α), see (2.21). An
illustration of ρX(β, α) is given in figure 1.

4.1. Preliminary study

For µ ∈ R, we analyse now the function α̃β(µ) � αsup, solution of equation (3.4):

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
= pX(β, α̃β(µ)) +

(µ− α̃β(µ))
2

4λ
. (4.5)

Since pX(β, α) (2.14) is a convex function for α < αsup [1, 34], the function

g(α) ≡ ∂αp
X(β, α) +

α

2λ
(4.6)
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is a strictly increasing function for α < αsup. Note that g(α) is not continuous for α = α1,β .
Then, we define the two chemical potentials µ1,inf(β) and µ1,sup(β) by
µ1,inf(β) ≡ 2λρXinf(β, α1,β ) + α1,β = 2λ lim

α→α−
1,β

∂αp
X(β, α) + α1,β = 2λ lim

α→α−
1,β

g(α)

µ1,sup(β) ≡ 2λρXsup(β, α1,β) + α1,β = 2λ lim
α→α+

1,β

∂αp
X(β, α) + α1,β = 2λ lim

α→α+
1,β

g(α)


(4.7)

cf (2.19) and (4.6), with ρXinf(β, α1,β) and ρXsup(β, α1,β ) defined by (4.2) (see also figure 1).
Then, for µ < µ1,inf(β) or for µ such that

µ1,sup(β) < µ < 2λ lim
α→α−

sup

∂αp
X(β, α) + αsup (4.8)

where α̃β (µ) is defined by (4.5) is always the unique solution of{
∂α

(
pX(β, α) +

(µ− α)2

4λ

)} ∣∣∣∣
α=α̃β (µ)

= 0 (4.9)

i.e. by (4.6) α̃β (µ) verifies

g(̃αβ(µ)) ≡ ∂αp
X(β, α̃β(µ)) +

α̃β (µ)

2λ
= µ

2λ
.

However, for µ ∈ [µ1,inf(β), µ1,sup(β)], one has

g(α) <
µ

2λ
for α < α1,β

see (4.6), i.e. {
∂α

(
pX(β, α) +

(µ− α)2

4λ

)}
< 0 (4.10)

for α < α1,β , whereas for α > α1,β we obtain

g(α) >
µ

2λ
⇔
{
∂α

(
pX(β, α) +

(µ− α)2

4λ

)}
> 0 (4.11)

see (4.6). Therefore, via (4.10) and (4.11) combined with (4.5), one has

α̃β(µ) = α1,β for µ ∈ [µ1,inf(β), µ1,sup(β)]. (4.12)

Now, from (4.8) we may have two different cases (see figure 1):

(a) either there is no critical particle density, i.e. (2.20) is satisfied;
(b) or there is a saturation of the infinite-volume particle density ρX(β, α) (2.18), i.e. one

has a critical particle density ρX(β, αsup) (2.21).

If there is a critical particle density ρX(β, αsup), then we define by

µc(β) ≡ 2λρX(β, αsup) + αsup = 2λ lim
α→α−

sup

∂αp
X(β, α) + αsup = 2λ lim

α→α−
sup

g(α) (4.13)

the corresponding critical chemical potential (cf (2.19) and (4.6)). Thus, for µ = µc(β), the
equality (4.9) is verified and α̃β (µc(β)) = αsup. Moreover, by the convexity of pX(β, α) as a
function of α < αsup, one has

g(α) <
µ

2λ
⇔ ∂α

(
pX(β, α) +

(µ− α)2

4λ

)
< 0 (4.14)

for any α < αsup and µ > µc(β) (4.13), see also (4.6). Consequently, assuming (2.21), the
unique solution α̃β(µ) of (4.5) equals

α̃β(µ � µc(β)) = αsup. (4.15)
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0
α1
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Figure 2. Illustration of the function α̃β (µ) � αsup defined by equation (4.5) with no saturation
of the particle density ρX(β, α) (2.18), see (2.20).

To summarize (4.5)–(4.15), α̃β(µ) is unique and continuous and:

1◦. If there is no saturation of the particle density ρX(β, α) (2.18), i.e. (2.20) is satisfied, then

(a) for µ ∈ (−∞, µ1,inf(β)], α̃β(µ) ∈ (−∞, α1,β ] is stricly increasing;
(b) for µ ∈ [µ1,inf(β), µ1,sup(β)], α̃β(µ) = α1,β is constant;
(c) for µ � µ1,sup(β) (4.7), α̃β(µ) ∈ [α1,β , αsup) is stricly increasing,

(4.16)

cf figure 2.
2◦. If there is a saturation (2.21) of the particle density ρX(β, α) (2.18) then

(a) for µ ∈ (−∞, µ1,inf(β)], α̃β(µ) ∈ (−∞, α1,β ] is stricly increasing;
(b) for µ ∈ [µ1,inf(β), µ1,sup(β)], α̃β(µ) = α1,β is constant;
(c) for µ ∈ [µ1,sup(β), µc(β)], α̃β(µ) ∈ [α1,β , αsup] is stricly increasing;
(d) for µ � µc(β) (4.13), α̃β(µ) = αsup is constant,

(4.17)

cf figure 3.

4.2. The grand-canonical particle density

Now, we are in a position to analyse the grand-canonical particle density ρSX� (β,µ) (2.9) in
the thermodynamic limit.

Theorem 4.1. Assuming condition 2.1 and (iv), we have

ρSX(β,µ) ≡ lim
�
ρSX� (β,µ) = (µ− α̃β(µ))

2λ
(4.18)

for (β,µ) ∈ QS (3.3), with α̃β (µ) � αsup defined by (4.5), see also (4.16) and figure 2 or
(4.17) and figure 3.

Note that (4.18) remains true even if the non-superstable Hamiltonian HX
� (2.1) verifies

only (i)–(iii) of condition 2.1.

Proof. A part of this proof is already included in the rigorous proof of theorem 3.2 (mostly
given in appendix A). However, in order to clarify the arguments concerning only the particle
density ρSX(β,µ) (4.18) in appendix A and also to complete them, we rewrite everything.
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Figure 3. Illustration of the function α̃β (µ) � αsup defined by equation (4.5) with saturation of
the particle density ρX(β, α) (2.18), see (2.21).

1◦. Since the set
{
pSX� (β,µ)

}
�

(2.8) is a set of convex functions forµ ∈ R, using the Griffiths
lemma [28, 29], (2.9) and (3.4), i.e. (4.5), imply, in the thermodynamic limit,

ρSX(β,µ) = ∂µp
SX(β,µ) = ∂α

{
pX(β, α) +

(µ− α)2

4λ

} ∣∣∣∣
α=α̃β (µ)

∂µα̃β(µ)

+ ∂µ

{
pX(β, α) +

(µ− α)2

4λ

} ∣∣∣∣
α=α̃β (µ)

. (4.19)

2◦. Let us consider

µ ∈ (−∞, 2λ lim
α→α−

sup

∂αp
X(β, α) + αsup)\[µ1,inf(β), µ1,sup(β)]

cf (4.7). Then, equations (4.9) and (4.19) imply

ρSX(β,µ) = (µ− α̃β(µ))

2λ
α̃β(µ) < αsup α̃β (µ) �= α1,β (4.20)

for µ < µ1,inf(β) or

µ1,sup(β) < µ < 2λ lim
α→α−

sup

∂αp
X(β, α) + αsup.

3◦. Let us consider

µ ∈ [µ1,inf(β), µ1,sup(β)].

Then, via (4.12) one has α̃β(µ) = α1,β for µ ∈ [µ1,inf(β), µ1,sup(β)], i.e.

∂µα̃β(µ) = 0 for µ ∈ (µ1,inf(β), µ1,sup(β)). (4.21)

By (4.20), note that

lim
µ→µ−

1,inf(β)
ρSX(β,µ) = (µ1,inf(β)− α1,β)

2λ

lim
µ→µ+

1,sup(β)
ρSX(β,µ) = (µ1,sup(β)− α1,β )

2λ
.

(4.22)
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Therefore, equation (4.19) combined with (4.21) gives

ρSX(β,µ) = (µ− α̃β(µ))

2λ
for µ ∈ (µ1,inf(β), µ1,sup(β)), which, from (4.12) and (4.22), implies

ρSX(β,µ) = (µ− α̃β(µ))

2λ
= (µ− α1,β)

2λ
for µ ∈ [µ1,inf(β), µ1,sup(β)]. (4.23)

4◦. Assuming (2.21), let us consider µ � µc(β) (4.13). Then, from (4.15), one has
α̃β(µ) = αsup for µ � µc(β), i.e.

∂µα̃β(µ) = 0 for µ > µc(β). (4.24)

Note that (4.20) gives the following limit:

lim
µ→µ−

c (β)
ρSX(β,µ) = (µc(β)− αsup)

2λ
. (4.25)

Then, from (4.19) and (4.24), we obtain

ρSX(β,µ) = (µ− α̃β(µ))

2λ
for µ > µc(β), which, by (4.15) and (4.25), also gives

ρSX(β,µ) = (µ− α̃β(µ))

2λ
= (µ− αsup)

2λ
for µ � µc(β). (4.26)

5◦. Therefore, (4.18) is a direct consequence of (4.20), (4.23) and (4.26). �

Remark 4.2. From theorem 4.1, we have

ρSX(β,µ) : µ ∈ R → (0,+∞)

see also lemma A.1 in appendix A. In fact, even if ρX(β, α) is discontinuous for α = α1,β ,
ρSX(β,µ) is a continuous and strictly increasing function from µ ∈ R to (0,+∞).

Remark 4.3. By (4.5) combined with theorem 4.1, we have

pSX(β,µ) = pX(β, α̃β(µ)) + λ[ρSX(β,µ)]2.

Then, according to the case verified by the model X (2.1), either (2.20) or (2.21) (cf also (4.16)
and (4.17) and figures 2 and 3), one has two different corollaries from theorem 4.1.

Corollary 4.4. If (2.20) is verified, then for (β,µ) ∈ QS (3.3) the unique solution α̃β(µ) < αsup

of (4.5) verifies:

ρSX(β,µ) =


ρX(β, α̃β(µ)) for µ � µ1,inf(β)

ρXinf(β, α1,β) +
µ− µ1,inf(β)

2λ
for µ ∈ [µ1,inf(β), µ1,sup(β)]

ρX(β, α̃β(µ)) for µ � µ1,sup(β)

(4.27)

cf figure 1(a) and figure 4, see also (4.16) and figure 2. Here ρXinf(β, α1,β), ρXsup(β, α1,β) and
µ1,inf(β), µ1,sup(β) are defined by (4.2) and (4.7), respectively.

Proof. From (2.20), equation (4.9) is verified for any

µ ∈ R\[µ1,inf(β), µ1,sup(β)]

cf (4.7) and (4.8). Then, from (2.19) and (4.9) we obtain{
∂α

(
pX(β, α) +

(µ− α)2

4λ

)} ∣∣∣∣
α=α̃β (µ)

= ρX(β, α̃β(µ))− (µ− α̃β(µ))

2λ
= 0 (4.28)
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ρ   (β,µ)

Figure 4. Illustration of the particle density ρSX(β, µ) (4.18) with nosaturation of the particle
density ρX(β, α) (2.18), see (2.20) and (4.27).

for µ ∈ R\[µ1,inf(β), µ1,sup(β)], which by theorem 4.1 implies (4.27).
For

µ ∈ [µ1,inf(β), µ1,sup(β)]

α̃β(µ) = α1,β (4.12) and the equality (4.27) is just a consequence of the definitions (4.2) and
(4.7) combined with theorem 4.1. �

Corollary 4.5. If there is a saturation of the particle density ρX(β, α) (2.18), i.e. one has
a critical particle density ρX(β, αsup) (2.21) and a corresponding critical chemical potential
µc(β) (4.13), then we obtain

ρSX(β,µ) =



ρX(β, α̃β(µ)) for µ � µ1,inf(β)

ρXinf(β, α1,β) +
µ− µ1,inf(β)

2λ
for µ ∈ [µ1,inf(β), µ1,sup(β)]

ρX(β, α̃β(µ)) for µ ∈ [µ1,sup(β), µc(β)]

ρX(β, αsup) +
µ− µc(β)

2λ
for µ � µc(β)

(4.29)

cf figures 1(b) and 5, see also (4.17) and figure 3. Here ρXinf(β, α1,β), ρXsup(β, α1,β) and
µ1,inf(β), µ1,sup(β) are defined by (4.2) and (4.7), respectively.

Proof. From (2.21), equation (4.9) is verified for any

µ ∈ (−∞, µc(β))\[µ1,inf(β), µ1,sup(β)]

cf (4.7) and (4.8). Hence, through (2.19) and (4.9) we obtain (4.28), which implies (4.29) for
µ ∈ (−∞, µc(β))\[µ1,inf(β), µ1,sup(β)]. From (4.2), (4.7) and (4.12) combined with theorem
4.1, we obtain (4.27) for µ ∈ [µ1,inf(β), µ1,sup(β)], whereas, for µ � µc(β), equation (4.29)
comes directly from (4.13), (4.15) and theorem 4.1. �

5. Direct applications

5.1. The fixed particle density as a parameter in the grand-canonical ensemble

Let us consider for ρ > 0 the fixed particle density in the grand-canonical ensemble.
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On the one hand, if the grand-canonical particle density ρX(β, α) (2.18) is a strictly
increasing function for α < αsup, then for any

ρ < lim
α→α−

sup

ρX(β, α) (5.1)

there is a unique α(ρ) < αsup such that

ρX(β, α(ρ)) = ∂αp
X(β, α(ρ)) = ρ (5.2)

cf (2.18) and (2.19). If (2.21) is verified, i.e. there is a saturation of the infinite-volume particle
density ρX(β, α) (2.18), we extend the function α(ρ) to ρ � ρX(β, αsup) by

α(ρ) ≡ αsup for ρ � ρX(β, αsup). (5.3)

On the other hand, from lemma A.1 in appendix A, for any ρ > 0 there is always a unique
chemical potential µ(ρ) solution of the equation

ρSX(β,µ(ρ)) = ρ (5.4)

which also verifies

α̃β(µ(ρ)) = α(ρ) (5.5)

for any ρ > 0, see corollaries 4.4 and 4.5 combined with (5.2) and (5.3), cf also (4.16) and
(4.17) and figures 2 and 3. In fact, from (5.2)–(5.5) combined with theorem 4.1, we find

ρX(β, α(ρ)) = ρSX(β,µ(ρ)) = (µ(ρ)− α(ρ))

2λ
= ρ (5.6)

which implies that

µ(ρ) = 2λρ + α(ρ) (5.7)

for any ρ > 0, cf (5.2) and (5.3).
If we consider the thermodynamic limit of the pressures (2.8) for a fixed particle density

ρ > 0, one obtains the following result.

Theorem 5.1. If the non-superstable Hamiltonian HX
� (2.1) verifies condition 2.1, then for

any

ρ < lim
α→α−

sup

ρX(β, α)

one has

pSX(β,µ(ρ)) = pX(β, α̃β(µ(ρ))) + λρ2 = pX(β, α(ρ)) + λρ2. (5.8)

If (2.21) is verified, then for ρ � ρX(β, αsup),

pSX(β,µ(ρ)) = pX(β, αsup) + λρ2 = pX(β, α(ρ)) + λρ2 (5.9)

where pX(β, αsup) is defined by (2.17). α(ρ) andµ(ρ) are defined by (5.2)–(5.4), respectively.

Proof. From (5.2)–(5.5) combined with remark 4.2 one obtains (5.8)–(5.9). �

Therefore, from theorem 5.1, for a fixed particle density ρ > 0, we find in the
thermodynamic limit the corresponding grand-canonical pressure for the superstable model
SX (2.4). Actually, this theorem has to be related to theorem 3.1:

f SX(β, ρ) = f X(β, ρ) + λρ2 pSX(β,µ(ρ)) = pX(β, α(ρ)) + λρ2 (5.10)

for ρ > 0.
In spite of (5.10) note that f SX(β, ρ) and pSX(β,µ(ρ)) are of course not equal, see

(5.11). We can make the same remark for f X(β, ρ) and pX(β, α(ρ)). However, from
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theorem 5.1 one can easily find again the result of theorem 3.1 assuming convexity of f X(β, ρ)
(2.11) and f SX(β, ρ) (3.2).

Indeed, if the free-energy density f SX(β, ρ) (3.2) is a convex function for ρ > 0, since
the pressure pSX(β,µ) (4.5) is defined as the Legendre transformation of f SX(β, ρ), by (5.4)
one also has

f SX(β, ρ) =sup
µ∈R

{µρ − pSX(β,µ)} = µ(ρ)ρ − pSX(β,µ(ρ)) (5.11)

i.e. the weak equivalence of canonical and grand-canonical ensembles is verified for the
superstable Bose gas SX (2.4).

In the same way, using (2.15) we have

f X(β, ρ) = sup
α<αsup

{αρ − pX(β, α)} = α(ρ)ρ − pX(β, α(ρ)) (5.12)

for ρ < lim
α→α−

sup

ρX(β, α), whereas if (2.21) is satisfied then for ρ � ρX(β, αsup)

∂α{αρ − pX(β, α)} = ρ − ∂αp
X(β, α) = ρ − ρX(β, α) � 0

and

f X(β, ρ) = sup
α<αsup

{αρ − pX(β, α)} = αsupρ − pX(β, αsup) = α(ρ)ρ − pX(β, α(ρ)) (5.13)

for ρ � ρX(β, αsup), see (5.3). Therefore, assuming the convexity of f X(β, ρ) and f SX(β, ρ)
as a function of ρ > 0, from (5.7) and (5.11)–(5.13) the results (5.8) and (5.9) imply (3.1), i.e.
theorem 3.1.

Remark 5.2. For any ρ > 0 the function ρ → µ(ρ) (5.4) is always a bijective function from
ρ > 0 to µ(ρ) ∈ R, see lemma A.1 in appendix A or (5.7). But if there is a critical density
ρX(β, αsup) (2.21) for the model X (2.1) then the function ρ → α(ρ) (5.2) and (5.3) is only
bijective from ρ � ρX(β, αsup) to α(ρ) � αsup.

5.2. The PBG (1.9) and its superstabilized form, i.e. the IBG (1.13)

Hence, if we consider the superstabilization of the PBG, i.e. HX
� = T� (1.9), then we recall

that HSX
� = H IBG

� (1.13) with λ = v(0)/2 > 0. For the PBG, note, again, that α1,β does not
exist, i.e. ρXinf(β, α1,β) �= ρXsup(β, α1,β) (4.2) and µ1,inf(β) �= µ1,sup(β) (4.7) do not exist.

Then the theorems 3.2 and 4.1 imply, respectively, the thermodynamic limit of the pressure

pIBG
� (β,µ) = 1

βV
ln TrFB

�

(
e−β(H IBG

� −µN�)
)

(5.14)

associated with the IBG (1.13), and that of the particle density ρIBG
� (β,µ) ≡

〈N�/V 〉H IBG
�
(β,µ):

pIBG(β,µ) ≡ lim
�
pIBG
� (β,µ) = inf

α<0

{
pPBG(β, α) +

(µ− α)2

4λ

}
(5.15)

ρIBG(β,µ) ≡ lim
�
ρIBG
� (β,µ) = µ− α̃PBG

β (µ)

2λ
(5.16)

where, for µ ∈ R, α̃PBG
β (µ) satisfies:

inf
α<0

{
pPBG(β, α) +

(µ− α)2

4λ

}
= pPBG

(
β, α̃PBG

β (µ)
)

+

(
µ− α̃PBG

β (µ)
)2

4λ
. (5.17)
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Here, αsup = 0 and

pPBG(β, α) = 1

β(2π)d

∫
R
d

ddk ln(1 − e−β(εk−α))−1

ρPBG(β, α) = 1

(2π)d

∫
R
d

ddk (eβ(εk−α) − 1)−1
(5.18)

are, respectively, the pressure and the particle density associated with the PBG (1.9) in the
grand-canonical ensemble (β, α).

Since there is no critical density for the PBG in dimensions d < 3, i.e. (2.20) is satisfied
for d < 3, then via corollary 4.4 (if we consider the non-existence of α1,β ), we find that the
unique solution α̃PBG

β (µ) < 0 of (5.17) verifies

ρIBG(β,µ) = ρPBG (β, α̃PBG
β (µ)

) = 1

(2π)d

∫
R
d

ddk
(

eβ(εk−α̃
PBG
β (µ)) − 1

)−1
(5.19)

for (β,µ) ∈ QS (3.3).
Nevertheless, for the PBG with d � 3, there is a critical density

ρPBG(β, 0) ≡ sup
α<0

ρPBG(β, α) = lim
α→0−

ρPBG(β, α) = 1

(2π)d

∫
R
d

ddk (eβεk − 1)−1 < +∞
(5.20)

i.e. (2.21) is verified (d � 3). Then, by corollary 4.5 (if we consider the non-existence of
α1,β) one obtains

ρIBG(β,µ) =

ρPBG(β, α̃PBG

β (µ)) for µ � µIBG
c (β) ≡ 2λρPBG(β, 0)

ρPBG(β, 0) +
µ− µIBG

c (β)

2λ
= µ

2λ
for µ � µIBG

c (β).

(5.21)

Note that (5.15)–(5.21) are just illustrations of the general results of this paper. The
thermodynamic behaviour of the IBG (1.13) was already detailed in [15–20].

For a fixed particle density ρ > 0, the theorem 5.1 also gives

pIBG(β,µIBG(ρ)) = pPBG(β, αPBG(ρ)) + λρ2 ρ < lim
α→0−

ρPBG(β, α) (5.22)

see (5.18) and if d � 3 then for ρ � ρPBG(β, 0) (5.20),

pIBG(β,µIBG(ρ)) = pPBG(β, 0) + λρ2. (5.23)

Here αPBG(ρ) and µIBG(ρ) satisfy

ρIBG(β,µIBG(ρ)) = ρPBG(β, αPBG(ρ)) = ρ ρ < lim
α→0−

ρPBG(β, α)

ρIBG(β,µIBG(ρ)) = ρ ρ � ρPBG(β, 0) d � 3
(5.24)

see (5.2) and (5.4). From (5.7), note that one has

µIBG(ρ) = 2λρ + αPBG(ρ) (5.25)

where, if d � 3 (cf (5.20)),

αPBG(ρ � ρPBG(β, 0)) ≡ 0 (5.26)

see (5.3).
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6. Concluding remarks

By adding the ‘forward scattering’ interaction (1.10) or the interaction (1.14), we propose
a method (2.4) of superstabilization for the non-superstable Hamiltonians HX

� (2.1) which
verifies some assumptions such as condition 2.1. Then, we show that the standard canonical
and grand-canonical thermodynamic functions (2.6)–(2.9) of the new model SX (2.4) depend
drastically on the original HamiltonianHX

� (2.1) (see theorems 3.1, 3.2, 4.2 and also corollaries
4.4 and 4.5).

Condition 2.1 only represents some sufficient conditions. The main condition is
assumption (iii) of condition 2.1, i.e. the weak equivalence of ensembles (2.15), see
theorems 3.1, 3.2 and 4.1. If we assume now only (ii) of condition 2.1 and (iv) as defined
in section 4, note that the weak equivalence of ensembles (2.15) may not be verified for
ρ ∈ [ρXinf(β, α1,β), ρ

X
sup(β, α1,β )

]
(4.2) or/and ρ � ρX(β, αsup) (2.21), see (4.1)–(4.4). In this

case, the results of theorems 3.2, 4.1 and of corollaries 4.4 and 4.5 only remain correct for

µ ∈ Iµ(β) ≡ {µ : ρX(β,µ) ∈ Iρ(β)(4.1)}
= (0, 2λ lim

α→α−
sup

ρX(β, α) + αsup)\[µ1,inf(β), µ1,sup(β)] (6.1)

with µ1,inf(β), µ1,sup(β) defined by (4.7). For µ ∈ R\Iµ(β), one has to know more precisely
the behaviour of f X(β, ρ) (2.11) as a function of ρ ∈ R+\Iρ(β).

Applying the superstabilization (2.4) to the PBG (1.9), one obtains the IBG (1.13). Then,
if we use the results mentioned above, again we find all the thermodynamic behaviour of the
IBG, cf (5.15)–(5.26), see [15–20, 26]. Considering the first (superstable) full Hamiltonian
H� (1.4):

H� =
∑
k∈�∗

εka
∗
k ak +

1

2V

∑
k1,k2∈�∗,q∈�∗\{0}

v(q)a∗
k1+qa

∗
k2−qak1ak2 +

v(0)

2V

∑
k1,k2∈�∗

a∗
k1
a∗
k2
ak2ak1

also note that the general results described above imply that the thermodynamic functions of
this Bose gas could be evaluated from those of the model

Ĥ� ≡
∑
k∈�∗

εka
∗
k ak +

1

2V

∑
k1,k2∈�∗,q∈�∗\{0}

v(q)a∗
k1+qa

∗
k2−qak1ak2 (6.2)

if we assume that the Hamiltonian Ĥ� (6.2) satisfies some sufficient conditions such as the
weak equivalence of ensemble (2.15).

This procedure of superstabilization (2.4) ensures, in the thermodynamic limit, the strong
equivalence of ensembles (canonical/grand-canonical): for a fixed total particle density ρ > 0,
the infinite-volume SX Gibbs state in the grand-canonical ensemble coincides with that in the
canonical ensemble, since the corresponding infinite-volume particle density ρSX(β,µ) (4.18)
is bijective from µ ∈ R to (0,+∞), cf remarks 4.2 and 5.2. In fact, in a subsequent paper, we
will show that this is done without destroying the ‘fundamental’ thermodynamic properties
issued from the Bose system X (2.1). In particular, the phenomenona of Bose condensation
are the same in both models X (2.1) and SX (2.4) (see as an example [27, 33]). Finally, using
the thermodynamic behaviour of the superstable system SX in the grand-canonical ensemble,
we will explain that this method of superstabilization (2.4) also allows us to study the original
model X in the canonical ensemble.
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Appendix A

From (2.2) and (2.13), the Hamiltonian HSX
� (2.4) is superstable [1] for any box �, cf (2.5),

which implies the existence of the (infinite-volume) pressurepSX(β,µ) for anyµ ∈ R and β >
0. The pressure pSX(β,µ) (3.4) is the Legendre transformation of f SX(β, ρ) (3.1) and (3.2):

pSX(β,µ) = sup
ρ>0

{µρ − f SX(β, ρ)} = sup
ρ>0

{µρ − λρ2 − f X(β, ρ)}. (A.1)

Then, via (A.9),

ρ̃ = ρSX(β,µ) (A.2)

is a solution of

pSX(β,µ) = sup
ρ>0

{µρ − f SX(β, ρ)} = µρ̃ − f SX(β, ρ̃) = µρ̃ − λρ̃2 − f X(β, ρ̃). (A.3)

Note that, generally the solution for (A.3) would not be unique if ρSX(β,µ) were not
continuous or if f SX(β, ρ) were not strictly convex. Straightforward calculations give

inf
α<αsup

{
αρ +

(µ− α)2

4λ
− f X(β, ρ)

}
= µρ − λρ2 − f X(β, ρ) (A.4)

and, thus, (A.1) takes the form

pSX(β,µ) = sup
ρ>0

{
inf
α<αsup

{
αρ +

(µ− α)2

4λ
− f X(β, ρ)

}}
. (A.5)

Note that, in general, sup
ρ>0

and inf
α<αsup

do not commute. Actually, (following a remark of one

referee), via (A.5) one has

pSX(β,µ) � inf
α<αsup

{
sup
ρ>0

{
αρ +

(µ− α)2

4λ
− f X(β, ρ)

}}
(A.6)

and from (2.15) we deduce

pSX(β,µ) � inf
α<αsup

{
sup
ρ>0

{αρ−f X(β, ρ)} +
(µ− α)2

4λ

}

= inf
α<αsup

{
pX(β, α)+

(µ−α)2
4λ

}
= pX(β, α̃β(µ))+

(µ− α̃β(µ))2
4λ

.

(A.7)

For a gas X that also verifies assumption (iv) as defined in section 4, a complete study of the
function α̃β(µ) is given by (4.5)–(4.17). Note that

∂µ

{
inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}}
= (µ− α̃β (µ))

2λ
� (µ− αsup)

2λ
. (A.8)

For further details concerning (A.8), see the proof of theorem 4.1.
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X

X

X

c

SX

0 µ
supµ    (β)infµ   (β)

sup

inf

1

1

ρ   (β,α  )

ρ   (β,α  )

supρ  (β,α    )

µ  (β)

ρ   (β,µ)

Figure 5. Illustration of the particle density ρSX(β, µ) (4.18) with saturation of the particle density
ρX(β, α) (2.18), see (2.21) and (4.29).

Lemma A.1. The (infinite-volume) particle density

ρSX(β,µ) ≡ lim
�
ρSX� (β,µ) = lim

�
∂µp

SX
� (β,µ) = ∂µp

SX(β,µ) (A.9)

is an increasing function for µ ∈ R, verifying

lim
µ→−∞ ρSX(β,µ) = 0 lim

µ→+∞ ρSX(β,µ) = +∞ (A.10)

i.e.

ρSX(β,µ) : µ ∈ R → (0,+∞). (A.11)

Proof. The pressure pSX(β,µ) � 0 is an increasing convex function for µ ∈ R and

lim
µ→−∞ pSX(β,µ) = a � 0 lim

µ→+∞ pSX(β,µ) = +∞. (A.12)

Through the Griffiths lemma [28, 29] applied to the sequence
{
pSX� (β,µ)

}
�

(2.8) of convex
functions for µ ∈ R, by (2.9) one obtains (A.9). From (A.2) and (A.3), ρ = ρSX(β,µ) is
solution of the equation

µ = 2λρ + ∂ρf
X(β, ρ). (A.13)

Since the function f X(β, ρ) (2.11) is convex for ρ > 0, then for µ → +∞, the solution
ρSX(β,µ) of (A.13) diverges. Consequently, considering also (A.12), ρSX(β,µ) is an
increasing function for µ ∈ R satisfying (A.10) and (A.11), see figure 5. �

Lemma A.2. Let us consider 0 � ρ1 < ρ2 � +∞. If the (infinite-volume) free-energy
density f X(β, ρ) (2.11) is strictly convex for ρ ∈ (ρ1, ρ2) ⊂ [0,+∞) and if ∂ρf X(β, ρ) is a
continuous function for ρ ∈ (ρ1, ρ2), then

pSX(β,µ) ≡ lim
�
pSX� (β,µ) = inf

α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
(A.14)

for any µ ∈ (µ1, µ2) with −∞ � µ1 < µ2 � +∞ defined by

lim
µ→µ+

1

ρSX(β,µ) = ρ1 and lim
µ→µ−

2

ρSX(β,µ) = ρ2 (A.15)

see lemma A.1.
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0

F (ρ,α)

α

ρ
ρ

α

.

Figure 6. Illustration of the function F(ρ, α).

Proof. We consider µ ∈ (µ1, µ2), i.e. ρ̃ = ρSX(β,µ) ∈ (ρ1, ρ2), see lemma A.1 and (A.15).
If ρ ∈ (ρ1, ρ2), then f X(β, ρ) (2.11) is strictly convex and so the function F(ρ, α) defined by

F(ρ, α) ≡ αρ +
(µ− α)2

4λ
− f X(β, ρ) α < αsup ρ > 0 (A.16)

is a strictly concave function for ρ ∈ (ρ1, ρ2) and a strictly convex function for α < αsup.
Then, we obtain the uniqueness of the stationary point (ρ̃, α̃) corresponding to

∂αF (ρ̃, α̃) = ρ̃ − (µ− α̃)

2λ
= 0 ∂ρF (ρ̃, α̃) = 0 (A.17)

for ρ ∈ (ρ1, ρ2) and α < αsup, see figure 6.
Moreover, from (A.1)–(A.5) and (A.16), for µ ∈ (µ1, µ2) we have

pSX(β,µ) =sup
ρ>0

{
inf
α<αsup

{F(ρ, α)}
}

= sup
ρ∈(ρ1,ρ2)

{
inf
α<αsup

{F(ρ, α)}
}
. (A.18)

Therefore, by (A.17) for ρ ∈ (ρ1, ρ2) and α < αsup, equation (A.18) implies

pSX(β,µ) = sup
ρ∈(ρ1,ρ2)

{
inf
α<αsup

{F(ρ, α)}
}

= F(ρ̃, α̃) = inf
α<αsup

{
sup

ρ∈(ρ1,ρ2)

{F(ρ, α)}
}

(A.19)

for µ ∈ (µ1, µ2). Since f X(β, ρ) is strictly convex for ρ ∈ (ρ1, ρ2), one obtains

−∞ � α1 ≡ lim
ρ→ρ+

1

∂ρf
X(β, ρ) < ∂ρf

X(β, ρ) < α2 ≡ lim
ρ→ρ−

2

∂ρf
X(β, ρ) � αsup (A.20)

for any ρ ∈ (ρ1, ρ2). Then, via (2.15) and (2.19), note that

ρ̂ = ρX(β, α) = ∂αp
X(β, α) (A.21)

is the only solution for α ∈ (α1, α2) of the equation

pX(β, α) = sup
ρ>0

{αρ − f X(β, ρ)} = sup
ρ∈(ρ1,ρ2)

{αρ − f X(β, ρ)} = αρ̂ − f X(β, ρ̂) (A.22)

i.e.

α = ∂ρf
X(β, ρ̂) ∈ (α1, α2). (A.23)

In fact, if α � α1, then

sup
ρ∈(ρ1,ρ2)

{αρ − f X(β, ρ)} = lim
ρ→ρ+

1

{αρ − f X(β, ρ)} (A.24)

whereas, if α2 � α � αsup,

sup
ρ∈(ρ1,ρ2)

{αρ − f X(β, ρ)} = lim
ρ→ρ−

2

{αρ − f X(β, ρ)}. (A.25)
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Therefore, if we consider the only stationary point (ρ̃, α̃) (A.17) for µ ∈ (µ1, µ2), by (A.16)
and (A.19), equations (A.2) and (A.3) and (A.24) and (A.25) imply that

if α̃ � α1 then ρ̃ = lim
µ→µ+

1

ρSX(β,µ) = ρ1 and

if α̃ � α2 then ρ̃ = lim
µ→µ−

2

ρSX(β,µ) = ρ2

which contradicts µ ∈ (µ1, µ2), i.e. ρ̃ = ρSX(β,µ) ∈ (ρ1, ρ2), see lemma A.1 and (A.15).
Hence, for µ ∈ (µ1, µ2), α̃ ∈ (α1, α2) and by (A.19) we find

pSX(β,µ) = inf
α<αsup

{
sup

ρ∈(ρ1,ρ2)

{F(ρ, α)}
}

= inf
α∈(α1,α2)

{
sup

ρ∈(ρ1,ρ2)

{F(ρ, α)}
}

= F(ρ̃, α̃)

(A.26)

for µ ∈ (µ1, µ2). By (A.16) and (A.22) we have

sup
ρ∈(ρ1,ρ2)

{F(ρ, α)} = sup
ρ∈(ρ1,ρ2)

{αρ − f X(β, ρ)} +
(µ− α)2

4λ
= pX(β, α) +

(µ− α)2

4λ

for α ∈ (α1, α2), which by (A.26) implies

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
= pX(β, α̃β(µ)) +

(µ− α̃β(µ))
2

4λ
(A.27)

for µ ∈ (µ1, µ2). �

Remark A.3. From (A.9), (A.2), (A.21) and (A.22) combined with (A.26), and via (A.27),
note that the only stationary point (ρ̃, α̃) (A.17) verifies α̃ = α̃β(µ) ∈ (α1, α2) and

ρ̃ = ρSX(β,µ) = ρX(β, α̃β(µ)) = (µ− α̃β(µ))

2λ
= ∂µp

SX(β,µ) (A.28)

for µ ∈ (µ1, µ2) (A.15).

From (2.15) in condition 2.1, note that the (infinite-volume) free-energy density f X(β, ρ)
(2.11), as a function of ρ > 0, is convex but not necessarily strictly so.

Lemma A.4. Let us consider 0 < ρ1 < ρ2 � +∞. If the free-energy density f X(β, ρ) (2.11)
is not strictly convex for ρ ∈ [ρ1, ρ2) ⊂ (0,+∞), i.e. f X(β, ρ) is a straight line for ∈ [ρ1, ρ2),
then

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
(A.29)

for any µ ∈ [µ1, µ2) with −∞ < µ1 < µ2 � +∞ defined by (A.15).

Proof. Let us consider µ ∈ [µ1, µ2), i.e. ρ̃ = ρSX(β,µ) ∈ [ρ1, ρ2 � +∞), see lemma A.1
and (A.15). From (A.1)–(A.3), for µ ∈ [µ1, µ2) we have

pSX(β,µ) = sup
ρ>0

{µρ − f SX(β, ρ)} = sup
ρ∈[ρ1,ρ2)

{µρ − λρ2 − f X(β, ρ)}. (A.30)

Through (2.15), the free-energy density f X(β, ρ) is convex for ρ > 0, but not strictly for
ρ ∈ [ρ1, ρ2). Then,

∀ρ ∈ [ρ1, ρ2)

{
∂ρf

X(β, ρ) = ∂ρf
X(β, ρ1) = α1 � αsup

f X(β, ρ) = α1(ρ − ρ1) + f X(β, ρ1)

}
(A.31)

and from (A.22),

pX(β, α1) = α1ρ1 − f X(β, ρ1) = α1ρ̂ − f X(β, ρ̂) (A.32)
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for any ρ̂ ∈ [ρ1, ρ2). Actually, the particle density ρX(β, α)(ρX(β, α1) ∈ [ρ1, ρ2)) (2.18) and
(2.19) is not continuous for α = α1. Consequently, via (A.30)–(A.32), we obtain

pSX(β,µ) = pX(β, α1)+ sup
ρ∈[ρ1,ρ2)

{(µ− α1)ρ − λρ2} = pX(β, α1) +
(µ− α1)

2

4λ
(A.33)

for µ ∈ [µ1, µ2), which from (A.9) implies

ρSX(β,µ) = (µ− α1)

2λ
∈ (ρ1, ρ2) (A.34)

for µ ∈ (µ1, µ2), i.e.

µ1 = 2λρ1 + α1 µ2 = 2λρ2 + α1 � +∞. (A.35)

Since ρX(β, α) is an increasing function of α < αsup, from (A.35) we deduce that

∀α � α1 ∂α

{
pX(β, α) +

(µ− α)2

4λ

}
� 0

∀α � α1 ∂α

{
pX(β, α) +

(µ− α)2

4λ

}
� 0

for µ ∈ [µ1, µ2), i.e. one has

pSX(β,µ) = pX(β, α1) +
(µ− α1)

2

4λ
= inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
(A.36)

for µ ∈ [µ1, µ2), cf (A.33). �

Lemma A.5. If ρ1 ∈ (0,+∞) is such that ∂ρf X(β, ρ) is not continuous for ρ = ρ1, then

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
(A.37)

for

µ ∈ {µ ∈ R : ρSX(β,µ) = ρ1} = [µ1, µ̃1] (A.38)

see lemma A.1.

Proof. Let us consider

α1 ≡ lim
ρ→ρ−

1

∂ρf
X(β, ρ) < α̃1 ≡ lim

ρ→ρ+
1

∂ρf
X(β, ρ).

Then, from (2.15) we have

[α1, α̃1] = {α ∈ R : ρX(β, α) = ρ1}
pX(β, α) = sup

ρ>0
{αρ − f X(β, ρ)} = αρ1 − f X(β, ρ1) for α ∈ [α1, α̃1] (A.39)

i.e. pX(β, α) is not strictly convex for α ∈ [α1, α̃1]. If we use (A.5), we obtain

pSX(β,µ) = sup
ρ>0

{
inf

α∈[α1(ρ),̃α1(ρ)]

{
αρ − f X(β, ρ) +

(µ− α)2

4λ

}}
(A.40)

for µ ∈ [µ1, µ̃1] with

µ1 ≡ 2λρ1 + α1 µ̃1 ≡ 2λρ1 + α̃1

α1(ρ) ≡ 2λ(ρ1 − ρ) + α1 α̃1(ρ) ≡ 2λ(ρ1 − ρ) + α̃1.
(A.41)

Since f X(β, ρ) is convex for ρ > 0 (cf (2.15)), ∀α ∈ [α1(ρ), α̃1(ρ)],

∂ρ

{
αρ − f X(β, ρ) +

(µ− α)2

4λ

}
> 0 (A.42)
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for 0 < ρ < ρ1, whereas for ρ > ρ1

∂ρ

{
αρ − f X(β, ρ) +

(µ− α)2

4λ

}
< 0. (A.43)

Consequently, from (A.40) and (A.41) combined with (A.42) and (A.43), we obtain

pSX(β,µ) = inf
α∈[α1(ρ1),̃α1(ρ1)]

{
αρ1 − f X(β, ρ1) +

(µ− α)2

4λ

}
= inf
α∈[α1 ,̃α1]

{
αρ1 − f X(β, ρ1) +

(µ− α)2

4λ

}
(A.44)

for µ ∈ [µ1, µ̃1]. Since

inf
α∈[α1 ,̃α1]

{
αρ1 − f X(β, ρ1) +

(µ− α)2

4λ

}
= inf
α<αsup

{
αρ1 − f X(β, ρ1) +

(µ− α)2

4λ

}
= µρ1 − λρ2

1 − f X(β, ρ1)

for µ ∈ [µ1, µ̃1], from (A.39) and (A.44), we deduce

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
= µρ1 − λρ2

1 − f X(β, ρ1)

for µ ∈ [µ1, µ̃1], i.e. for µ ∈ {µ ∈ R : ρSX(β,µ) = ρ1}, cf (A.2) and (A.3). �
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